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1 Summary
Transfer learning in reinforcement learning has been an active area of research over the past decade.
In transfer learning, training on a source task is leveraged to speed up or otherwise improve learn-
ing on a target task. This project addressed the ambitious problem of curriculum learning in
reinforcement learning, in which the goal is to design a sequence of source tasks for an agent to
train on, such that final performance or learning speed is improved. We take the position that each
stage of such a curriculum should be tailored to the current ability of the agent in order to promote
learning new behaviors.

To tackle the problem of curriculum learning, we addressed three key sub-problems: 1) Learn-
ing Transferability, and 3) Automatic Source Task Creation, 3) Curriculum Construction through
Crowd-Sourcing.

1.1 Learning Inter-Task Transferability
In a reinforcement learning setting, the goal of transfer learning is to improve performance on a
target task by re-using knowledge from one or more source tasks. A key problem is choosing
appropriate source tasks for a given target task. Current approaches typically require that the agent
has some experience in the target domain, or that the target task is specified by a model (e.g.,
a Markov Decision Process) with known parameters. To address these limitations, we propose
a framework for selecting source tasks in the absence of a known model or target task samples.
Instead, our approach uses meta-data (e.g., attribute-value pairs) associated with each task to learn
the expected benefit of transfer given a source-target task pair. To test the method, we conducted
a large-scale experiment in the Ms. Pac-Man domain in which an agent played over 170 million
games spanning 192 variations of the task. The agent used vast amounts of experience about
transfer learning in the domain to model the benefit (or detriment) of transferring knowledge from
one task to another. Subsequently, the agent successfully selected appropriate source tasks for
previously unseen target tasks.

1.2 Automatic Source Task Creation
In many realistic scenarios, source tasks may not be available by default and instead, must be
created on the fly. In such situations, the trainer must be able to create novel, agent-specific source
tasks that can serve as a curriculum tailored towards an agent trying to learn a particularly difficult
target task. We explore how such a space of useful tasks can be created using a parameterized
model of the domain and observed trajectories on the target task. We experimentally show that
these methods can be used to form components of a curriculum and that such a curriculum can be
used successfully for transfer learning in 2 challenging multiagent reinforcement learning domains.

1.3 Crowd-sourcing for Curriculum Learning
Most existing work in curriculum learning focuses on developing automatic methods to iteratively
select training examples with increasing difficulty tailored to the current ability of the learner, ne-
glecting how non-expert humans may design curricula. In this project we introduce a curriculum-
design problem in the context of reinforcement learning and conduct a user study to explicitly
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Figure 1: Different subgames in Quick Chess

explore how non-expert humans go about assembling curricula. We present results from 80 par-
ticipants on Amazon Mechanical Turk that show 1) humans can successfully design curricula that
gradually introduce more complex concepts to the agent within each curriculum, and even across
different curricula, and 2) users choose to add task complexity in different ways and follow salient
principles when selecting tasks into the curriculum. This work serves as an important first step
towards better integration of non-expert humans into the reinforcement learning process and the
development of new machine learning algorithms to accommodate human teaching strategies.

2 Introduction
As autonomous agents are called upon to perform increasingly difficult tasks, new techniques will
be needed to make learning such tasks tractable. Transfer learning [24, 58] is a recent area of
research that has been shown to speed up learning on a complex task by transferring knowledge
from one or more easier source tasks. However, most transfer learning methods assume the set
of source tasks is provided, and treat the transfer of knowledge as a one-step process. Paradigms
such as multi-task reinforcement learning and lifelong learning consider learning multiple tasks,
but typically focus on optimizing performance over all tasks, and/or still require the set of tasks to
be provided.

The goal of this research was to extend transfer learning to the problem of curriculum learning.
As a motivating example, consider the game of Quick Chess1 (Figure 1). Quick Chess is a game
designed to introduce players to the full game of chess, by using a sequence of progressively more
difficult “subgames.” For example, the first subgame is a 5x5 board with only pawns, where the
player learns how pawns move and about promotions. The second subgame is a small board with
pawns and a king, which introduces a new objective: keeping the king alive. In each successive
subgame, new elements are introduced (such as new pieces, a larger board, or different configu-
rations) that require learning new skills and building upon knowledge learned in previous games.
The final game is the full game of chess.

The question that motivates us is: can we find an optimal sequence of subgames (i.e. a curricu-
lum) for an agent to play that will make it possible to learn the target task of chess fastest, or at a
performance level better than learning from scratch?

We postulate that the effectiveness of such a curriculum depends crucially on the quality of the
source tasks that compose it and the current learning abilities of the agent. As in Quick Chess, tasks
should be designed to build upon existing knowledge and promote learning new skills. However,
unlike Quick Chess, the tasks need not be the same for all agents.

1http://www.intplay.com/uploadedFiles/Game Rules/P20051-QuickChess-Rules.pdf
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We tackled the problem of curriculum learning along several fronts. First, we propose a so-
lution to the problem of source-task selection in which the agent learns to predict the benefit of
transferring knowledge from one task to another. Second, we propose a set of methods for source-
task construction in which a trainer creates source-tasks specifically adapted to an agent learning
a difficult target task. Finally, we explored how non-expert humans create curricula for RL agents
in a crowd-sourcing setting.

2.1 Learning Inter-Task Trasnferability
In a typical transfer learning scenario, the agent solves a target task by leveraging knowledge from
1 or more source tasks. An agent may transfer individual samples [55, 26, 25], a learned action-
value function [57, 10], a policy [15, 14], or a model [36, 13]. Most current research in TL assumes
that a good source task has already been identified [58]. The main limitation of the few existing
approaches to source task selection is that they typically require the agent to already have some
experience (e.g., training samples) in the target domain or for the target domain to be specified
using a model (e.g., a Markov Decision Process) with known parameters.

To address these limitations, we propose a framework for selecting appropriate source tasks
that uses meta-data – more specifically, attribute-value pairs – associated with each task. Our main
hypothesis is that given parameters or attributes that describe two tasks, an agent may learn the
benefits (or lack thereof) of transferring knowledge from one of them to the other. To test this
hypothesis, we conducted a large-scale experiment in the Ms. Pac-Man domain in which the agent
played over 170 million games spanning 192 variations of the task. For each source-target task pair,
the agent measured the jump start in performance on the target task as a result of applying value-
function transfer [59]. Subsequently, the agent learned a regression model of the transferability
for any given pair and successfully used it to select appropriate source tasks for a new set of
target tasks. To our knowledge, this is the largest computational experiment in transfer learning
conducted to date.

2.1.1 Related Work

In recent years, research in transfer learning (TL) has improved the performance of reinforcement
learning (RL) methods by enabling them to re-use knowledge from one task to another (see [58]
and [24] for a review). For example, an agent may transfer individual samples [55, 26, 25], a
learned action-value function [57, 10], a policy [15, 39, 14], or a model [36, 13]. In situations
where the state and/or action spaces differ across tasks, an agent can learn an inter-task mapping
[4] or use a hard-coded one provided by a human teacher [61]. Most TL methods assume that the
source task has already been selected and that it is indeed a good source task for the target task
[58]. In a more general case, however, an agent may have to choose appropriate source tasks on
its own when faced with learning a complex novel task. This problem is referred to as source task
selection and while it has been addressed to some degree in standard supervised machine learning
domains (see [12, 41]), it has received relatively little attention in RL settings [58]. This problem
is particularly important when some of the potential source tasks may be irrelevant to the target
task, in which case the agent can suffer from negative transfer.

The few existing methods for source task selection typically assume that the agent has some
experience (e.g., training samples) in the target task or that a model of the target task is available
to the agent. For example, the method described by Lazaric et al. [26] enables an agent to select
relevant samples from known source tasks by comparing them to samples collected in the target
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task. In their experiments, the agent was able to effectively choose samples from two source tasks
to speed up learning on the target task. A different approach to the problem is that of Nguyen et
al. [36] where instead of transferring samples, the method transfers learned expectation models
of how the environment changes as a result of the agent’s actions. In that framework, the agent
learns expectation models from a set of known source tasks and then dynamically identifies which
of these models are useful when learning the new target task. Similarly, Perkins and Precup [37]
describe an approach in which the agent learns reinforcement learning options on a set of source
tasks and then uses them on a target task. While learning the target task, the agent estimated the
value of known options by maintaining a belief about the target task’s identity with respect to the
known tasks.

Another model-based approach to the problem is described by Ammar et al. [5]. The authors
propose a novel similarity measure for Markov Decision Processes which is shown to be effective
at selecting good source tasks for a target task. Like other model-based approaches for transfer
learning, the method proposed by Ammar et al. requires that the agent has access to a good
estimate of the target task’s MDP, which in practice may not always be available.

In contrast to existing methods for source task selection, we address the problem under the
assumption that no samples from the target task are available. Instead, we consider the case where
tasks are described using a fixed-length feature vector and thus, the agent is tasked with learning
transferability across tasks using such meta-data. While most existing methods are evaluated only
on a single target task, our empirical evaluation is conducted using a large-scale experiment in
which the agent learns pairwise task transferability for a large number of tasks.

Another area of research that is relevant to this study is that of case based reasoning (CBR)
[1, 29]. When faced with a new problem, CBR methods typically find similar problems (i.e.,
cases) that have already been solved in the past and re-use their solution. This is typically done
by the use of a similarity function that can be used to identify relevant cases. The major limitation
of applying CBR for source task selection is that it requires the similarity function to be indicative
of whether or not transferring from one task to another will result in positive or negative transfer.
Therefore, while we evaluate the approach of using task descriptors to compute task similarity and
select sources accordingly, the work here proposes that an agent can learn to directly predict the
outcome of transfer from the task descriptors.

2.2 Source Task Creation for Curriculum Learning
In many realistic scenarios, source tasks may not be available by default and instead, must be
created on the fly. In such situations, the trainer must be able to create novel, agent-specific source
tasks that can serve as a curriculum tailored towards an agent trying to learn a particularly difficult
target task.

Thus, as a first step towards curriculum development, we focus on how to automatically con-
struct a space of useful subtasks. Our approach uses knowledge of the problem encoded via a
parameterized model of the domain, and observes the agent’s performance on the target task and
each prior task in the curriculum, in order to suggest new source tasks tailored to the abilities of
the agent.

Our three contributions are as follows. First, we introduce the problem of curriculum learning
in the context of reinforcement learning. Second, we propose a set of methods that can produce a
space of agent-specific subtasks suitable for use in a curriculum. Third, we experimentally show
that training using a curriculum has a strong impact on the learning speed or performance of an
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agent, and that the sequence of tasks in the curriculum does matter. Furthermore, we demonstrate
that the methods proposed can create such a curriculum, and be used successfully for transfer
learning.

2.2.1 Related Work

Learning via a curriculum is an idea pervasive throughout human and animal training [46]. Re-
cently, curriculum learning has also started to be explored in the context of supervised learning
[6, 22], where the order in which individual samples are presented to an online learner was shown
to considerably affect learning speed and generalization. Several related paradigms, such as multi-
task learning [9] and lifelong learning [42], consider learning groups of prediction tasks. These
methods assume tasks are related, and knowledge gained from solving one task can transfer to help
learn another. In particular, Ruvolo and Eaton [41] show how a learner can actively select tasks to
improve learning speed for all tasks, or for a specific target task. However, all of these works apply
to supervised prediction tasks and assume the set of tasks to be learned is already given.

Subsequently, many of these ideas have been studied in the reinforcement learning paradigm.
For example, Wilson et al. [68] explored multi-task reinforcement learning while Ammar et al. [3]
consider lifelong learning applied to sequential decision making tasks. In both cases, a sequence
of RL tasks is presented to a learner, and the goal is to optimize over all tasks. In contrast, our
source tasks are designed solely to improve performance on a target task. We aren’t concerned
with optimizing performance in a source. In addition, neither work considers task generation, and
thus are dependent on the quality of source tasks given.

In fact, as far as we know, we are the first to propose general methods for creating source tasks
for transfer learning. Past work has typically relied solely on domain knowledge to supply suitable
source tasks. For example, 3v2 keepaway serving as a source for 4v3 keepaway [57], 2D mountain
car as a source for 3D mountain car [56], or varying parameters of physical systems [3]. Sinapov
et al. [44] use a set of task descriptors, which are similar to our degrees of freedom, to specify a set
of source tasks. This work goes significantly beyond all of those by creating agent-specific tasks
from a dynamic analysis of an agent’s performance, and shows how these tasks can be used in a
multistage curriculum.

Finally, the problem of source task selection, which is different from task generation has been
considered in single step transfer learning as well [23, 44]. As before, they assume the set of
tasks is already prespecified, and the goal is to select the best ones. Again, these tasks are not
individualized for each agent, and thus depend on the quality of tasks present.

2.3 Crowd-Sourcing Curriculum Design for RL Agents
Humans acquire knowledge efficiently through a highly organized education system, starting from
simple concepts, and then gradually generalizing to more complex ones using previously learned
information. Similar ideas are exploited in animal training [46]—animals can learn much bet-
ter through progressive task shaping. Recent work [6, 22, 27] has shown that machine learning
algorithms can benefit from a similar training strategy, called curriculum learning. Rather than
considering all training examples at once, the training data can be introduced in a meaningful or-
der based on their apparent simplicity to the learner, such that the learner can build up a more
complex model step by step. The agent will be able to learn faster on more difficult examples after
it has learned on simpler examples. This training strategy was shown to drastically affect learning
speed and generalization [6, 22].
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While most existing work on curriculum learning (in the context of machine learning) focuses
on developing an automatic method to iteratively select training examples with increasing diffi-
culty tailored to the current ability of the learner [22, 27], how humans design curricula is one
neglected topic. A better understanding of the curriculum design strategies used by humans may
lead to the development of new machine learning algorithms that accommodate human teaching
strategies. Another motivation for this work is the increasing need for non-expert humans to teach
autonomous agents new skills without programming. A number of published works in Interactive
Reinforcement Learning [62, 20, 17] has shown that reinforcement learning (RL) [50] agents can
successfully speed up learning using human feedback, demonstrating the significant role humans
play in teaching an agent to learn a (near-) optimal policy. [53] first proposed that curricula should
be automatically designed in an RL context, and that we should try to leverage human knowledge
to design more efficient curricula [53]. As more robots and virtual agents become deployed, the
majority of teachers will be non-experts. This work focuses on understanding non-expert human
teachers—future work will investigate how to adapt machine learning algorithms to better take
advantage of this type of non-expert curricula. We believe this work is the first to explicitly study
how non-expert humans approach designing curricula for RL domains.

We are interested in studying whether humans can identify the concepts an agent needs to learn
in the curriculum to complete a given target task. We hypothesize that humans gradually introduce
more complex concepts to the agent within each curriculum. It is interesting to explore how hu-
mans increase task complexity and general principles regarding efficient curricula by analyzing the
humans’ design processes. If we can discover salient patterns within the curricula, we may be able
to automate the active selection of suitable tasks in a curriculum or design new RL algorithms with
inductive biases that favor the types of curricula non-expert human teachers use more frequently.

In this work, we task non-expert humans with designing a curriculum for an RL agent and
evaluate the different curricula designs they produced. Specifically, we consider an RL domain in
which an agent needs to learn to complete different tasks that are specified with textual commands
in a variety of simulated home environments using reinforcement and/or punishment feedback.
Human participants are told the target environment on which the agent will be tested on, and their
goal is to select a sequence of training tasks that will result in the agent learning the target task
as quickly as possible. Our results show that 1) most users successfully identified the two most
important concepts the agent needed to learn to complete the target task when designing curricula,
2) users tended to gradually introduce more complex concepts to the agent within each curriculum,
and even across different curricula, and 3) different users chose to increase task complexity in dif-
ferent ways and it was significantly affected by the ordering of the presentation of the source tasks.
We also find some interesting salient patterns followed by most users when selecting tasks into the
curriculum, which could be highly useful for the design of new RL algorithms that accommodate
human teaching strategies.

2.3.1 Related Work

The concept of curriculum learning was proposed by [6] to solve the non-convex optimization task
in machine learning more efficiently. Motivated by their work, considering the case where it is
hard to measure the easiness of examples, [22] [22] developed a self-paced learning algorithm to
select a set of easy examples in each iteration, to learn the parameters of latent variable models
in machine learning tasks. Similarly, [27] proposed a self-spaced approach to solve the visual
category discovery problem by self-selecting easier instances to discover first, and then gradually
discovering new models of increasing complexity.
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Although previous work has shown that machine learning algorithms can benefit from cur-
riculum strategies [6, 22, 27], there is limited work on curriculum learning in the context of RL.
However, there are several areas related to curriculum learning for RL. Wilson et al. [68] explored
the problem of multi-task RL, where the agent needed to solve a number of Markov Decision Pro-
cesses drawn from the same distribution to find the optimal policy. Sutton et al. [51] extended the
idea of lifelong learning [63] to the RL setting, considering the future sequence of tasks the agent
could encounter. Both cases assume a sequence of RL tasks is presented to a learner, and the goal
is to optimize over all tasks rather than only the target task. The idea of active learning [11] was
also exploited in RL domains [34, 64] to actively maximize the rate at which an agent learns its
environment’s dynamics.

Of existing RL paradigms, transfer learning [58] is the most similar to curriculum learning. The
main insight behind transfer learning is that knowledge learned in one or more source tasks can be
used to improve learning in one or more related target tasks. However, in most transfer learning
methods: 1) the set of source tasks is assumed to be provided, 2) the agent knows nothing about the
target tasks when learning source tasks, and 3) the transfer of knowledge is a single-step process
and can be applied in different similar domains. In contrast, the goal of curriculum learning is to
design a sequence of source tasks for an agent to learn such that it can develop progressively more
complex skills and improve performance on a pre-specified target task.

Taylor et al. [60] first showed that curricula work in RL via transfer learning by gradually
increasing the complexity of tasks. Narvekar et al. [35] developed a number of different methods
to automatically generate novel source tasks for a curriculum, and showed that such curricula could
be successfully used for transfer learning in multiagent RL domains. However, none of their work
explicitly investigates curriculum design from the perspective of human teachers. We think it is
natural to consider what humans do when designing curricula since it might be easier for them
to capture some examples that are “too easy” (e.g., does not help to improve the current model)
or “too hard” (e.g., long training times are needed before the current model could capture this
example) for the agent to learn. Such an idea has been studied in the context of teaching humans
(i.e., the zone of proximal development [65]) but not in agent learning.

By presenting a human-subjects experiment to explore how non-expert humans design curric-
ula, this work represents an important step towards designing better machine learning algorithms
that can accommodate human teaching strategies.

3 Methods, Assumptions, and Procedures

3.1 Background
A Markov Decision Process (MDP)M is defined by a 5-tuple 〈S,A,P ,R, γ〉where S is the set of
states, A is the set of actions, P : S ×A 7→ Π(S) is a transition function that maps the probability
of moving to a new state given an action and the current state,R : S×A 7→ R is a reward function
that gives the immediate reward of taking an action in a state, and γ ∈ [0, 1) is the discount factor.

At each step, the agent is able to observe its current state, and must choose an action according
to its policy π : S 7→ A. The goal of an RL agent is to learn an optimal policy π∗ that maximizes
the long-term expected sum of discounted rewards. One way to learn the optimal policy is to learn
the optimal action-value function Q∗(s, a), which gives the expected reward for taking action a in
state s, and following policy π∗ after:
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Q∗(s, a) = R(s, a) + γ
∑
s′

P(s′|s, a) max
a′

Q∗(s′, a′)

Common temporal difference methods for learning the action-value function include Q-learning
[49, 67] and Sarsa [45]. The optimal policy is then to choose arg maxaQ

∗(s, a) in each state.
These temporal-difference methods are especially useful for problems with large and continuous
state spaces which are challenging for approaches that directly try to learn the MDP. In this work,
most of our experiments were conducted using the Sarsa algorithm [45]. We used Sarsa as a simple
representative base learning algorithm, though in principle our methodology is equally applicable
to any RL algorithm that learns a value-function.

Since the policy consists of taking the action with the highest action-value, transferring a policy
is equivalent to transferring the action-value function. For example, if the function Q∗(s, a) is
represented using a parameterized function approximator, then value function transfer is achieved
by using the parameters learned in a source task to initialize the function’s parameters in the target
task. In other words, the agent starts learning the target task while acting under the policy learned
in the source task. When a good source task is available, value function transfer has been shown to
speed up learning by initializing the policy to something better than random exploration [57].

Common measures used to evaluate the result of transfer typically compare the learning tra-
jectory on the target task after transfer with the trajectory that was produced by learning the target
task from scratch [58]. In this work, we used the jumpstart measure to quantify transferability.
This measure looks at the difference between the initial performance after transfer and the initial
performance without transfer. Let Rbaseline ∈ RK be the reward curve after learning the target
task for K episodes such that rbaselinek ∈ R is the expected reward after learning for k episodes.
Similarly, let Rtransfer ∈ RK be the reward curve for learning the target task after transferring a
policy from the source task. The jump start metric can then be defined by:

jumpstart(m) =

∑m
k=1(r

transfer
k − rbaselinek )

m

The parameter m determines the size of the temporal window which is used to compute the
jump start after the onset of training on the target task. Other measures of transferability include
asymptotic performance improvement (or detriment) as well as time-to-threshold [58].

3.2 Modeling Task Transferability
Following, we introduce the proposed data-driven framework for modeling inter-task transferabil-
ity. The proposed framework described here is independent of the RL and TL methods that were
described in the previous section.

3.2.1 Notation and Problem Formulation

Let T be the set of possible tasks. Let Tsource ⊂ T be a set of tasks for which the agent has learned
a policy and let Ttarget ⊂ T be another set of tasks that represents the set of target tasks to be
learned by the agent. For each task Ti ∈ T , let Fi ∈ Rn be a feature descriptor for the task that is
known to the agent.

Given a target task Tj ∈ Ttarget, the goal of the agent is to select a task Ti ∈ Tsource such that Ti
serves as an effective source for learning Tj . Thus, given a task pair, Ti and Tj , let B(Ti, Tj) ∈ R
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denote the benefit of transferring the policy learned in Ti to the task Tj , where B(Ti, Tj) > 0 in-
dicates positive transfer, while B(Ti, Tj) < 0 indicates negative transfer. In this work, the transfer
benefit is estimated using the jump-start measure defined in Section 3.1, though in principle, other
measures can be appropriate as well.

We assume that for each pair of source tasks (Ti, Tj) such that Ti, Tj ∈ Tsource, the agent has a
reliable estimate for B(Ti, Tj). Next, we describe how the agent can use these estimates to predict
the expected transfer benefit between tasks in Tsource and tasks in Ttarget.

3.2.2 Predicting the Benefit of Transfer

Here, the task of the agent is to learn a function which, given two arbitrary tasks Ti and Tj from T ,
can predict whether Ti is a good source task for Tj . More specifically, the function should produce
the estimate B̂(Ti, Tj), i.e., the expected benefit of transferring from Ti to Tj . SinceB(Ti, Tj) ∈ R,
a natural solution for modeling the transferability between two tasks is to train a regression model.

Let Fi = [fi,1, fi,2, . . . , fi,n] and Fj = [fj,1, fj,2, . . . , fj,n] be the features for a pair of tasks
(Ti, Tj). To train a regression model on task pairs, a third feature vector is computed, X ij , such
that it captures some aspects of how the two feature vectors Fi and Fj are related. The feature
vector X ij was computed such that each element xijk is defined by:

xijk =
fi,k−fj,k
max(fi,k,ε)

where ε is a very small number to avoid divisions by 0. In other words, the vector represents the
change along the n-dimensional features space relative to the feature values of the first task in the
pair.2The function that computes how two tasks are related was designed to be sensitive to the
order of the tasks in the pair since preliminary experiments suggested that task transferability is
not always symmetric.

Given this representation and a dataset {X ij}Ti,Tj∈Tsource , a regression model M is trained such
that:

M(X ij) ≈ B(Ti, Tj)

Once trained on pairs of tasks from Tsource, the regression model is subsequently used to select
source tasks for the tasks in Ttarget. Given a target task Tj , the task Ti ∈ Tsource that maximizes
M(X ij) is selected as the source task. Next, we describe the performance measures that were used
to evaluate the framework proposed here.

3.2.3 Evaluation

For each target Tj ∈ Ttarget, the best possible source task is defined by:

T ∗ = arg maxTi∈Tsource B(Ti, Tj)

Let Ti be the source task selected by the model. To compare the model’s choice for a source
task to the optimal source task, we define the loss as:

1Other representations for the vector Xij were explored as well, including raw difference (i.e., fi,k−fj,k)
as well as ratio (i.e., fi,k/fj,k). Representations that captured the absolute or squared distance between Fi
and Fj did not perform as well as they were not sensitive to the order of the tasks in the pair.
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loss(Ti) = B(T ∗, Tj)−B(Ti, Tj)

We also evaluated the ranking of source tasks induced by the regression model. For a given
target task Tj , let Rj = [T{1}, T{2}, . . . , T{P}] be the ranked list of source task according to the
learned regression model, i.e., B̂(T{k}, Tj) ≥ B̂(T{k+1}, Tj). For each position k in the ranking, let
relk = B(T{k}, Tj) be a measure of the relevance of the result at that position. A common measure
to evaluate the quality of a ranking is the Discounted Cumulative Gain (DCG) [18]:

DCGp(Rj) = rel1 +

p∑
k=2

relk
log2(k)

where p ≤ P . The normalized DCG (NDCG) is computed by DCG(Rj)

DCG(Rbest
j )

where Rbest
j is the true

(i.e., best possible) ranking of source tasks. A normalized DCG of 1.0 would indicate a perfect
ranking.

For a baseline comparison, we consider the naive approach of selecting the most similar task
according to the feature vectors used to describe the tasks. In other words, given target task Tj ,
the naive method would select the source task Ti that minimizes the squared distance between Fi
and Fj , i.e., L2(Fi, Fj). The baseline approach does not perform any learning but nevertheless, we
hypothesize that it will perform better than randomly selecting a source task.

3.3 Source Task Creation For Curriculum Learning
So far, we have only considered the case in which the trainer has to pick an appropriate source-task
from a currently existing pool such that the agent benefits from knowledge transfer to a difficult
target task. Next, we address the setting in which the trainer must construct a source-task given a
particular learning agent and a difficult target task.

In curriculum learning, the goal is to generate a sequence of source tasks M1,M2, . . .Mt for
an agent to train on, such that the final asymptotic performance increases, or the learning time to
reach a desired performance threshold decreases, versus following any other curriculum. As an
important step towards this, we first define the domain D of possible tasks:

Definition 3.1. A domain D is a set of MDPs that can be expressed by varying a set of degrees of
freedom, and applying a set of restrictions.

The degrees of freedom F of a domain are a vector of features [F1, F2, . . . Fn] that parameterize
the domain. For example, in the Quick Chess domain, possible degrees of freedom could be the
size of the board, the number of each type of piece, or whether special rules such as castling or en
passant are allowed. Each Fi ∈ F has a range of values Rng(Fi) that represents the possible values
that feature can take. Furthermore, we assume there is an ordering defined over each Rng(Fi)
that corresponds to task complexity. Collectively, these degrees of freedom encode our domain
knowledge in the task.

An instantiation of F in D results in a specific task (an MDP). We assume we have a generator
τ that can create tasks given a domain and degree of freedom vector:

τ : D × F 7→M
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By restrictions, we mean the set of tasks that can be formed by eliminating certain actions or
states, modifying the transition or reward function, or changing the starting or terminal distribu-
tions of MDPs generated by τ .

Informally, D captures the universe of possible source tasks for use within the curriculum and
could be potentially infinite in size. Our goal is to create a subset of tasks inD that might be suitable
for learning a given target task, using knowledge of the domain, and tailored to the performance
and abilities of the learning agent.

Formally, given a target task MDPMt and trajectory samplesX consisting of tuples (s, a, s′, r)
from following some policy πt on Mt, the goal is to create suitable source tasks Ms ∈ D that will
lead to a policy in Mt that is better than πt. Specifically, we want functions f of the following
form:

f : Mt ×X 7→Ms

The overall process we propose is an incremental development of subtasks culminating in a
full curriculum: an agent first tries learning Mt, but gets stuck at suboptimal policy πt. X is
generated from πt, and used to generate a space of possible source tasks tailored for this agent at
this particular point in its learning process. For now, we assume a separate process is available to
select a suitable source task Ms from this space, and leave for future work an automated way of
finding it. The procedure then repeats, with Ms possibly becoming the new Mt, until a curriculum
emerges.

3.4 Search Space for Source Tasks
In this section, we describe several methods that can serve as f to create suitable source tasks for
a target task. Intuitively, there are many different ways in which a task could be a useful source
for transfer to Mt: it could have a smaller or more abstract state space; it could have some actions
removed; it could focus on a useful subgoal; or it could drill a common mistake. Some of these
source tasks could be generated by simply manipulating the degrees of freedom F , and indeed
we consider that case first. However, in the rest of the section, we define additional domain-
independent instantiations for f .

3.4.1 Task Dimension Simplification

The first method we propose, TASKSIMPLIFICATION (Algorithm 1), simplifies a task using knowl-
edge of the domain’s parameterization. Here, SIMPLIFY is a function that changes one of the de-
grees of freedom Fi ∈ F to a new F ′i ∈ Rng(Fi), in order to make the task smaller or easier. In
many domains, there is a natural interpretation for SIMPLIFY. For example, in Quick Chess, we
could reduce the value of parameters such as the size of the board or the number of specific pieces.
In multiagent settings, we can add cooperative agents or remove adversarial ones.

Algorithm 1 Task Simplification
1: procedure TASKSIMPLIFICATION(M,X,D, F, τ )
2: F ′ = SIMPLIFY(F )
3: M ′ ← τ(D, F ′)
4: return M ′

5: end procedure
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TASKSIMPLIFICATION transforms the S,A, P,R elements of an MDP simultaneously, in a
domain-specific way.

3.4.2 Promising Initializations

The second method is designed for tasks that have a sparse reward signal. In many RL problems,
positive outcomes can be rare, especially at the onset of learning. An agent may have to reach
the goal randomly or through some exploration scheme many times before the policy stabilizes.
PROMISINGINITIALIZATIONS creates a task that initializes an agent near states that were found to
have high reward.

Algorithm 2 Promising Initializations
1: procedure PROMISINGINITIALIZATIONS(M,X,C, δ, ρ)
2: Y ← {(s, a, s′, r) ∈ X : r ≥ ρth percentile of all rewards in X}
3: M ′ ←M
4: S ′0 ← {}
5: for (s, a, s′, r) ∈ Y do
6: S ′0 ← S ′0 ∪ FINDNEARBYSTATES(s,X,C, δ)
7: end for
8: M ′.S0 ← S ′0
9: return M ′

10: end procedure

Here, the parameter ρ ∈ [0, 100] is a percentile that defines the fraction of rewards an agent has
seen in its experience trajectory X that it should consider to be positive outcomes. FINDNEAR-
BYSTATES is a domain-dependent function that returns a set/distribution of states that are close to
a given state, using either a distance metric C : S × S 7→ R or a pseudo-distance based on steps
away in a trajectory. The exact form depends on the representation used for the MDP.

If the state space is factored, we can perturb the state vector by some amount δ such that
the distance from the original state to the perturbed state (measured by C) is less than δ. In our
Quick Chess example, if the state space consists of the positions of all pieces on the board, we can
use a distance metric that measures the least number of “moves” needed to transform one board
configuration to another. FINDNEARBYSTATES would return all configurations that are δ steps
away. If the state space is not factored (for example, in a tabular representation), then we can use
the trajectory samples X to find states that are at most δ steps away from a high reward state, and
explore these further.

3.4.3 Mistake-Driven Subtasks

Our next set of methods create subtasks to help an agent avoid and correct its mistakes. In principle,
a mistake is any action or sequence of actions (e.g., an option [48]) taken in a state that deviates
from the optimal policy.

In practice, the agent does not know the optimal policy while learning, so we propose 3 al-
ternative characteristics to automatically identify mistakes. The first is any action that leads to
unsuccessful termination of an episode, such as not reaching a goal state. Second is any action that
results in no change in state. Finally, a mistake could be any action that incurs a large negative
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reward. In the following methods, we use ISMISTAKE to denote whether a mistake was detected,
using these criteria.

Action Simplification

The first mistake-driven subtask generation method we propose, ACTIONSIMPLIFICATION (Algo-
rithm 3), prunes the action set to create a subtask where mistakes are less likely.

Action set pruning is especially useful in settings where actions have preconditions for success.
For example, a robot must grasp an object before manipulating it. An autonomous car must be
standing still before opening the doors. Intuitively, any complex, multi-stage policy could benefit
from this type of guided exploration.

Algorithm 3 Action Simplification
1: procedure ACTIONSIMPLIFICATION(M,X,α)
2: M ′ ←M
3: count(a) = 0,∀a ∈ A
4: Y ← {(s, a, s′, r) ∈ X : ISMISTAKE(s, a, s′, r)}
5: for (s, a, s′, r) ∈ Y do
6: count(a)+ = 1
7: end for
8: A′ = {a ∈ A : count(a) > α}
9: M ′.A = M ′.A \ A′

10: return M ′

11: end procedure

The parameter α ∈ Z is a threshold on the number of times an action should lead to a mistake
before it is pruned. In practice, it may be useful to set these thresholds so that only one action is
eliminated at a time, or only eliminated in certain states.

Mistake Learning

In contrast, the second approach, MISTAKELEARNING (Algorithm 4), directly tries to correct
mistakes by rewinding the game back some number of steps, and having the agent learn a revised
policy from there. Intuitively, focusing training on areas of the state space where the agent made
a “mistake,” gives access to this experience much faster, allowing the agent to also learn to correct
itself much faster.

The question of how far back in the trajectory to rewind is an interesting challenge in and of
itself. For now, REWIND is a simple method that looks back ε steps from s in trajectory X , and
returns the found state. However, in principle it could be more complex, based on the type of
mistake made or the situation where it was made. In our example of Quick Chess, we could rewind
the game to determine what should have been done differently to avoid a checkmate.

3.4.4 Option-based Subgoals

The next method creates subtasks for learning subgoals. The options literature [48] identifies
many approaches to finding subgoals. Many take a state-based approach, where the learner tries
to find states that may have strategic value to reach. For example, McGovern and Barto [32],
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Algorithm 4 Mistake Learning
1: procedure MISTAKELEARNING(M,X, ε)
2: M ′ ←M
3: S ′0 ← {}
4: Y ← {(s, a, s′, r) ∈ X : ISMISTAKE(s, a, s′, r)}
5: for (s, a, s′, r) ∈ Y do
6: S ′0 ← S ′0 ∪ REWIND(X, s, ε)
7: end for
8: M ′.S0 ← S ′0
9: return M ′

10: end procedure

identify subgoals as states that occur frequently in successful trajectories. Menache et al. [33]
try to find “bottleneck” states. Simsek and Barto [43] seek to create subgoals for “novel” states,
since they facilitate exploration of regions of the state space that the agent normally doesn’t reach.
Finally, graph-based approaches such as Mannor et al. [31] identify states by clustering over a
state-transition map.

OPTIONSUBGOALS (Algorithm 5) is designed to take any option discovery method (FINDOPTION)
to create a subtask. Specifically, it creates a task to learn an option given the option’s termination
set Sf and a pseudo-reward function R for completion. Since an option typically only involves a
subset of the task’s complete state space, this subtask allows quick learning of how to reach im-
portant states. For example, in Quick Chess, capturing the queen would be an example of a useful
subgoal.

Algorithm 5 Option Sub-goals
1: procedure OPTIONSUBGOALS(M,X, V, φ)
2: M ′ ←M
3: (Sf , R)← FINDOPTION(M,X, V, φ)
4: M ′.Sf = Sf
5: M ′.R = R
6: return M ′

7: end procedure

Since our work takes place in the context of transfer learning, we introduce one additional
option discovery method, FINDHIGHVALUESTATES (Algorithm 6), that uses high value states
learned in a previous task as a subgoal. Specifically, it checks whether any of the learned values
V (s) for states encountered in our trajectory X exceed a threshold φ.

Instead of using trajectory samples X , we can also extract high value states directly from the
value function. For example, with a tabular representation, we can simply lookup states of high
value. With function approximation, an optimization routine would be used to solve for high value
states.

3.4.5 Task-based Subgoals

An alternative to creating subgoals within an MDP is to create them directly at the task level.
Specifically, we set the termination set Sf of the input MDP to be the initiation set S0 of some
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Algorithm 6 Find High Value States
1: procedure FINDHIGHVALUESTATES(M,X, V, φ)
2: Sf ← {}
3: R←M.R
4: for (s, a, s′, r) ∈ X do
5: if V (s) > φ then
6: Sf ← Sf ∪ s
7: R(s, a, s′) = V (s)
8: end if
9: end for

10: return (Sf , R)
11: end procedure

other subtask, as shown in Algorithm 7:

Algorithm 7 Link Subtask
1: procedure LINKSUBTASK(M,Ms, V )
2: M ′ ←M
3: for s′ ∈Ms.S0, s ∈M.S, a ∈M.A do
4: R(s, a, s′) = V (s′)
5: end for
6: M ′.Sf ←Ms.S0

7: M ′.R← R
8: return M ′

9: end procedure

For example, we can create a subtask that terminates where PromisingInitializations starts as
follows:

M1 = PROMISINGINITIALIZATIONS(Mt, X, C, δ, ρ)

Ms = LINKSUBTASK(Mt,M1,M1.V )

Applied to Quick Chess, this would create a task to reach configurations that are likely to lead
to checkmate. The reward for reaching this terminal set is the value of the state in the subsequent
task. This idea is similar to skill chaining [21], except that instead of learning options linking target
regions to initiation sets, we link directly on tasks.

3.4.6 Composite Subtasks

Each of the previous subroutines f takes as input an MDP Mt and trajectory samples X , and
returns a modified task MDP Ms. By passing the samples and resulting Ms as input to another
function f , we can chain together arbitrary many subroutines to compose new source tasks.

Mathematically, let f and g be any two functions above. Assume we are given a target task
MDP Mt and trajectory samples X from it. Then, the composite task (f ◦ g) = f(g(Mt, X), X),
where for ease of exposition, we’ve left out the task specific threshold parameters.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15



Figure 2: An example five-room layout with one virtual dog, one chair, bag, and backpack with
the same color in our domain. It is also the target environment (target command: “move the bag to
the yellow room”) used in our user study.

Most of the domain-independent functions described previously make specific modifications to
a particular part of the target task MDP. In contrast, TASKSIMPLIFICATION can potentially make
changes to the state and action space, as well as the transition and reward functions all at once.
Thus, in practice, tasks should be composed using TASKSIMPLIFICATION first, followed by the
others.

3.4.7 Summary

In summary, we presented several functions that could create suitable source tasks for a target task.
They can be categorized into two types: the first (Section 3.4.1) allows for task creation using
domain knowledge. The others are largely domain-independent, and rely directly on trajectory
samples in the target task to create agent-specific tasks. We also showed how tasks of both types
can be combined to create flexible source tasks for curriculum learning.

We claim that the functions outlined are broadly and generally useful. However, they are not
the only possible methods; nor would every method apply to every domain. The next section
moves on to experiments in domains for which we have concrete transfer learning results, using
source tasks that can be generated with these functions.

3.5 Curriculum Construction by non-Expert Humans
The following section describes a sequential RL task with natural language command learning and
introduces a curriculum design problem for non-expert humans.
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3.5.1 Language Learning with Reinforcement and Punishment

Our domain is a simplified simulated home environment of the kind shown in Figure 2. The
domain consists of four object classes: agent, room, object, and door. The visual representation of
the agent is a virtual dog, since people are familiar with dogs being trained with reinforcement and
punishment. The agent can deterministically move one unit north, south, east, or west, and pushes
objects by moving into them. The objects are chairs, bags, backpacks, or baskets. Rooms and
objects can be red, yellow, green, blue, and purple. Doors (shown in white in Figure 2) connect
two rooms so that the agent can move from one room to another. The possible commands given
to the agent include moving to a specified colored room (e.g., “move to the red room”) and taking
an object with specified shape and color to a colored room (e.g., “move the red bag to the yellow
room”).

In this sequential domain, the agent needs to learn to respond appropriately to different natu-
ral language commands in a variety of simulated home environments using reinforcement and/or
punishment feedback. The learning algorithm for this study [30] connected the IBM Model 2
(IBM2) language model [7] with a factored generative model of tasks, and the goal-directed SABL
algorithm [28] for learning from feedback. In SABL, feedback signals from a trainer are mod-
eled as random variables that depend on the policy the trainer wants the agent to follow and the
last action the agent took in the previous state. In general, reinforcements under this model are
more likely than punishments when the agent selected an action consistent with the desired policy,
and vice versa for punishment when the action was inconsistent. Using this model of feedback,
SABL computes and follows the maximum likelihood estimate of the trainer’s target policy given
the history of actions taken and the feedback that the trainer has provided. We adapted SABL to
this goal-directed setting by assuming that goals are represented by MDP reward functions and
that the agent has access to an MDP planning algorithm that computes the optimal policy for any
goal-based reward function.

In contrast to previous work, we focus on studying how humans perform in designing curric-
ula rather than in training the agent with reinforcement and punishment. Therefore, in this study,
the human participants only choose the training curriculum, and the reinforcement and punish-
ment on each of the curriculum’s tasks is carried out by an automated trainer, and is observed by
participants.

Using this probabilistic trainer model and a curriculum from a human participant, an iterative
training regime over each task in the curriculum proceeds as follows. First, the agent receives an
English command. From this command, a distribution over the possible tasks for the current state
of the environment is inferred using Bayesian inference. This task distribution is used as a prior
for the goals in goal-directed SABL. The agent is then trained with SABL for a series of time
steps, while the explicit reinforcement and/or punishment feedback is given at random times by
the automated trainer. After completing training, a new posterior distribution over tasks is induced
and used to update the language model via weakly-supervised learning. After the language model
is updated, training begins on the next task and command from the curriculum.

As the agent learns additional tasks, it becomes better at “understanding” the language, suc-
cessfully interpreting and carrying out novel commands without any reinforcement and punish-
ment. For example, an agent might learn the interpretation of “red” and “chair” from the command
“move the red chair,” and the interpretation of “blue” and “bag” from the command “bring me the
blue bag,” thereby allowing correct interpretation of the novel command “bring me the red bag.”

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17



3.5.2 Curriculum Design Problem Formulation

Here, we introduce a curriculum design problem for non-expert humans in our sequential RL
domain, where the goal is to design a sequence of source tasks M1,M2, . . . ,Mn for an agent to
train on such that it can complete the given target task Mt quickly with little explicit feedback.
Each source task Mi is defined by a training environment, initial state, and a command to complete
in that environment.

To aid our study of how humans form curricula for the agent to train on, we provided subjects a
library of environments with different levels of complexities shown in the 4×4 grid in Figure 3. We
organized the space of source environments a human could choose to include in their curriculum
along two dimensions: the number of rooms and the number of moveable objects present in the
environment. The cross product of these factors defines the overall complexity of the learning task,
since these factors determine how many possible tasks the agent could execute in the environment
and therefore how much feedback an agent could require to identify what the intended task is. For
example, the environment in the top left of Figure 3 has the least complexity, because the only
possible task the agent can complete is going to the yellow room. In contrast, the bottom right
environment has the highest complexity, because the agent could be tasked with going to either
the green, red, yellow, or blue rooms; or taking the bag, chair, or backpack to any of the rooms
(excluding the room in which the object originates). For the ease of description, we number the
environments in the grid from 1 (top left) to 16 (bottom right), from left to right and top to bottom.
For example, the environments in the first row are numbered as 1–4 from left to right.

Figure 3: A library of environments provided in a 4× 4 grid. They are organized according to the
number of rooms and number of objects. There is a command list for each of the 16 environments.

After selecting an environment to include in the curriculum, users select the corresponding
command to be taught in it from a predefined list of possible commands. For example, the possible
commands for environment 5 (second row and first column of Figure 3) are “move to the red
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room,” and “move the bag to the red room.”
The target task (shown in Figure 2) has the maximum number of differently colored rooms and

shaped objects. In the user study, it is shown on the right side of the grid to remind users the goal of
the designed curriculum, but it cannot be selected as part of the curriculum (enforcing a separation
between training and testing).

Note that when we list the possible commands for each environment, we do not include the
command that will be used in the target task (“move the bag to the yellow room”). That is,
for any environment that contains a bag, the only possible command is “move the bag to the
red/green/blue/purple room” even when there is a yellow room. We are interested in studying
whether users can figure out that they can construct a curriculum that includes the command “move
to the yellow room” and the command “move the bag to the red/green/blue/purple room” to provide
the learning agent enough information to master the target command.

We varied the order of the 16 environments in the grid to study the effect of the ordering of
source tasks on human performance in designing curricula. Specifically, we transposed the grid,
swapping environments 1 and 16, 2 and 12, 3 and 8, etc., such that the difficulty level of the
environments gradually decreases from left to right, and top to bottom. Participants were assigned
to one of two experimental conditions which varied the ordering of source tasks in the grid:

• Gradually Complex Condition: the number of rooms increases from left to right, and the
number of objects increases from top to bottom (Figure 3).

• Gradually Simple Condition: the number of rooms gradually decreases from top to bottom,
and the number of objects gradually decreases from left to right.

3.5.3 User Study

To study whether non-expert humans (i.e., workers on Amazon Mechanical Turk, known as “Turk-
ers”) can design good curricula for an RL agent, we developed an empirical study in which par-
ticipants were asked to select a sequence of source tasks for an agent to train on such that it can
complete the target task quickly with little explicit feedback.

In our user study, human participants must first pass a color blind test before starting the ex-
periment since the training task requires the ability to identify different colored objects. Second,
participants fill out a background survey indicating their age, gender, education, history with dog
ownership, dog training experience, and the dog-training techniques they are familiar with. Third,
participants are taken through a tutorial that 1) walks them through two examples of the dog being
trained to help them understand how the dog learns to complete a novel command successfully
using reinforcement and punishment feedback, and 2) teaches them how to design and evaluate a
curriculum for the dog. Participants are told that 1) their goal is to design a sequence of source
tasks the dog will train on such that the dog can successfully complete the given target task quickly,
and 2) higher payment would be given to the Turker if the dog performs well in the target task.

Following the tutorial, participants are requested to select environments and corresponding
commands in any order to design their own curricula. Recall that the target task is shown on the
right side of the screen to remind participants of the goal for the designed curricula. Upon finishing
designing a curriculum (containing at least one task), participants can choose to evaluate their cur-
riculum, watching the automatic trainer teach the agent the entire curriculum. Then, participants
are required to redesign the curriculum at least once. We ask participants to explain their strategy
for designing the initial curriculum and what things they identified that the dog needed to learn
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Figure 4: Screen shots of the game Ms. Pac-Man. In our experiments, the agent played 192
variations of the task, spanning 4 different mazes, shown above. The top-left image shows the
configuration at the start of each game.

in the curriculum to successfully complete the target task. Participants were also required to ex-
plain how they redesigned the curriculum. Participants had the option of providing any additional
comments about the experiment.

4 Results and Discussion
This section describes the experiments used to evaluate the proposed methods. More specifically,
Section 4.1 describes the experimental evaluation of the proposed framework for learning inter-
task transferability. Following, Section 4.2 describes a series of experiments demonstrating the
methods proposed for source-task creation.

4.1 Learning Inter-task Transferability
To evaluate the proposed framework, we conducted a large-scale experiment in the Ms. Pac-Man
domain. The following subsections describe the domain, the experimental methodology, and the
results of the experiment.
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Table 1: The Reward Structure of the Ms. Pac-Man Domain
Event Reward (points)

Ms. Pac-Man eats a pill 10
Ms. Pac-Man eats a power pill 50
Ms. Pac-Man eats a ghost 200
Ms. Pac-Man eats an additional
ghost while they are still edible

Apply a multiplier of 2 to the
usual reward for each additional
ghost that is eaten

Ms. Pac-Man is eaten by a ghost Game Over

4.1.1 The Ms. Pac Man Domain

The framework for learning task transferability was evaluated using the Ms. Pac-Man domain,
shown in Figure 4. The goal of the Ms. Pac-Man agent is to traverse a maze and earn points by
eating edible items such as pills, while avoiding ghosts. The game typically starts with a large
number of pills, four power pills located near each corner, and four ghosts that are initially placed
in a lair that is inaccessible to Ms. Pac-Man. Shortly after the game starts, the ghosts leave their
lair and may either chase Ms. Pac-Man or move about randomly. If a ghost catches Ms. Pac-Man,
the game is over (we did not model the number of lives that are typically available to a human
player). Whenever the agent eats one of the four power pills, the ghosts themselves become edible
by Ms. Pac-Man for a short amount of time and their speed is reduced. If a ghost is eaten during
that time, Ms. Pac-Man earns points and the ghost is sent back to the lair for a fixed amount of
time, after which it starts to operate as normal. The agent’s action space consists of four actions,
up, down, left, and right, though not every action is available in every state. Ms. Pac-Man eats
pills, power pills and ghosts (when edible) whenever she gets within a small distance threshold of
the object. Table 1 lists the rewards Ms. Pac-Man can get for different events in the game. The
game ends when all the pills are gone, Ms. Pac-Man is eaten by a ghost, or 2000 time steps pass.

In our experiments, we used the Ms. Pac-Man implementation described by Taylor et al. [54].
The raw state space of the gameis highly dimensional and also specific to each maze, thus making it
unsuitable for learning. Therefore, in practice the state space in the Ms. Pac-Man game is typically
represented by a set of local features that are ego-centric with respect to Ms. Pac-Man’s position
on the board (see [40, 8, 52] for a representative sample of approaches). In this work, we used 7
heavily-engineered features defined in [54]. These features calculate properties such as the safety
of junctions, and scores for the amount of pills and ghosts that could potentially be eaten along a
certain direction. The agent learned the game using the Sarsa RL algorithm [45]. The action-value
function was represented by a simple linear function approximator over those 7 features.

4.1.2 Experimental Methodology

We generated 192 variations of the Ms. Pac-Man task by varying several of the game’s parameters:

• Maze: each game was played on one of four different mazes, shown in Figure 4.

• Number of ghosts: the number of ghosts present in the game was varied from 1 to 4.
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Figure 5: An example baseline test for one of the 192 tasks. The dark line indicates the reward
averaged after 10 different runs (shown as the lighter lines), each starting with a different random
seed. In this example, the policy converged after about 700 episodes.

• Ghost slowdown: when Ms. Pac-Man eats a power pill, the ghosts become edible and their
movement speed is reduced. The ghost-slowdown parameter specified the amount of speed
reduction and varied from 1 to 4, in increments of 1. When the Ghost slowdown is set to n,
then the ghosts remain stationary every nth game step when they are edible. Thus, a higher
value makes the ghosts move faster, while a value of 1 makes them stop moving completely.

• Ghost type: the ghosts behaved according to one of three different modes: Standard, Ran-
dom, and Chaser

The three different ghost behaviors are as follows: (1) Standard ghosts chase Ms. Pac-Man
80% of the time and move randomly the other 20%. When Ms. Pac-Man eats a power pill, the
ghosts start moving away from the agent and eventually revert to their original behavior once they
are no longer edible; (2) Random ghosts choose a random direction when reaching a junction
100% of the time. This makes it easier for Ms. Pac-Man to avoid them, but harder for Ms. Pac-
Man to catch ghosts after eating a power pill. (3) Chaser ghosts have the same behavior as the
Standard ghosts when inedible. However, after Ms. Pac-Man eats a power pill, they continue
moving towards Ms. Pac-Man instead of fleeing. This makes it easy for Ms. Pac-Man to learn to
eat ghosts (sometimes also too easy, since Ms. Pac-Man can learn to just stay in place and let the
ghosts come to it, which does not transfer well to the normal setting).

Varying the four parameters resulted in 4× 4× 4× 3 = 192 versions of the game. These 192
tasks constituted the full set of tasks T . To compute transferability for all pairs of tasks, the agent
first learned to play each task from scratch for 2, 500 episodes (the number of total episodes was
chosen such that the agent’s policy converged on each of the 192 tasks). Each episode consisted of
playing a full game of Ms. Pac-Man. After each episode, the policy was frozen and the agent played
an additional 10 games to compute a reliable estimate for the expected reward at each point during
training. This procedure was repeated 10 times for each task in order to account for the stochastic
nature of the domain. Thus, the agent played a total of 192×2, 500× (1 + 10)×10 = 50, 800, 000
games to compute the baseline performance reward curves. Figure 5 shows an example baseline
test for one of the 192 tasks. The bold line indicates the average reward curve from the 10 different
runs.

Once the baseline curves were computed, the benefit of transfer was estimated for all task
pairs. To do so, for each of the 36, 672 pairs of tasks (Ti, Tj) in T , the agent learned on task Tj for
30 episodes starting with the policy learned on task Ti (i.e., the agent transferred the policy from
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Table 2: The features that describe each task
Feature Description

number-of-ghosts The number of ghosts

ghost-slowdown The level of ghost speed reduction after Ms. Pac-Man eats a power
pill

ghost-type The behavior of the ghosts. There are three possible values: Ran-
dom, Standard, and Chaser.

num-nodes The number of nodes in the maze graph

num-pills The number of regular pills in the maze

distance-to-ghost The distance between Ms. Pac-Man and the ghosts at the start of
the game

distance-power The average distance between power pills

distance-lair The average distance between the ghost lair and the power pills

junctions-between-
junctions

The average number of junctions (i.e., nodes with more than 2
neighbors) that lie on the shortest path between any pair of junc-
tions

eccentricity The average eccentricity of nodes in the graph. The eccentricity
for a node u is defined as e(u) = max{d(u, v) : v ∈ V } where d

is the shortest-path function for a pair of nodes and V is the total
set of nodes in the graph.

eccentricity-junction The average eccentricity of junctions. The eccentricity for a junc-
tion node u is defined as e(u) = max{d(u, v) : v ∈ J} where
J ⊂ V is the set of nodes that are junctions.

graph-diameter The diameter of the graph is defined as diam(G) =

max{e(u)|u ∈ V }.
num-nodes-d2 Number of nodes with 2 neighbors

num-nodes-d3 Number of nodes with 3 neighbors

num-nodes-d4 Number of nodes with 4 neighbors

source task Ti to target task Tj). This process was repeated 10 times for each pair, such that in each
run, a different one of the 10 policies computed during the baseline run was used as a starting point.
Thus the agent played 36, 672 × 30 × (1 + 10) × 10 = 120, 101, 760 games. The average reward
with transfer and the average baseline reward over the first 30 episodes were then used to compute
the jump start measure. The jump start measure requires a parameter m that denotes the size of
the temporal window (in terms of number of episodes) to be used when averaging the rewards (see
Section 3.1). We computed the jump start measure for m = 1, 3, 5, 10, 15, and the maximum, 30.

All told, to compute both the baseline reward curves as well as the transfer reward curves, the
agent had to play over 170 million games. This type of an experiment would be next to impos-
sible on a single computer and therefore, we used our department’s Condor Cluster system [16].
A learning episode typically took about 0.5 − 0.75 seconds, though this duration could vary de-
pending on the cluster machine being used. Based on logged data, the experiment took over 2,300
hours of compute time spread over 192 individual machines. We believe that this is the largest
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Figure 6: An example transfer result for a given target task and two potential source tasks. Task A
is clearly the better source task, resulting in a large positive transfer.

computational experiment in transfer learning to date.
The framework for learning task transferability proposed in Section 3.2.2 requires that the

agent has access to a real valued feature vectors that describes each task. Table 2 shows the task
features that were used in our experiments. All of the features, except for ghost-type, are numeric.
The ghost-type feature was originally nominal and therefore was converted into 3 different binary
features, one for each type of ghost behavior. Thus, Fi ∈ R17. The features that were used to
describe the tasks corresponded to the parameters used to generate the tasks, as well as graph-
based features induced by the maze in each task. The features were not specifically selected or
tuned to maximize performance. The graph-based features included domain specific attributes
(e.g., the distance between Ms. Pac-Man’s starting position and the Ghosts’ lair) as well as general
graph-based features such as eccentricity and a histogram of the nodes’ degrees (the last three
features in the Table 2).

In our experiments, we explored two different implementations for the regression model M
described in section 3.2.2: 1) Linear Regression, and 2) M5 Model trees [38]. Linear Regression
was selected due to its simplicity, while the M5 Model tree was selected as it is able to handle
non-linear problems. Both implementations can be found in the WEKA machine learning library
[69]. The WEKA implementation uses a modified version of the original tree induction algorithm,
called M5P [66] which added pruning as a part of the training stage.

4.1.3 The Transferability Matrix

Figure 6 shows an example transfer result for a target task and two different source tasks. In this
case, transferring the policy from one of the source task to the target task results in positive transfer,
while the other source task induces negative transfer. Figure 7 shows the whole transferability
matrix computed for the set of 192 tasks considered in our experiments. In this example, each
entry contains the expected benefit of transfer according to the jumpstart(30) measure for each
pair of tasks (in other words, the jump start was computed over the first 30 training episodes on
the target task). White values indicate high jump start while black values indicate low (possibly
negative) jump start.

The order of the columns and rows of the matrix is not random but rather, the entries are sorted
first according to the maze, then ghost-type, then ghost-slowdown, and then finally, number-of-
ghosts. The last 1/4 set of columns in the matrix appear brighter than the rest because those tasks

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
24



20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

Figure 7: An example transferability matrix computed for each pair of the 192 tasks considered in
our experiments. In this matrix, the entry at i, j amounts to the resulting jumpstart(30) measure
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Figure 8: Histograms of the jump start measures for two randomly chosen target tasks (i.e., a
histogram over the values in a given column of the transferability matrix). For the first target task
(top histogram), virtually all source task result in positive transfer, while for the second, there are
a large number of source tasks that induce negative transfer.

were much more likely to benefit from transfer. These tasks corresponded to tasks with the fourth
maze, which proved to be much more difficult for the agent than the other three mazes. The grid-
like pattern shows that transfer is not random and hence, we hypothesized that the parameters that
define the tasks may be useful in predicting the benefit of transfer across tasks.

Figure 8 shows a histogram of the jump start measures for two randomly chosen target tasks
(i.e., a histogram over the values in a given column of the transferability matrix). Even though the
shapes of the histograms are similar, one of the target tasks is much more likely to benefit from
transfer. For the first target task (top histogram), virtually all source tasks result in positive transfer.
For the second target task, however, there are a large number of source tasks that induce negative
transfer, which further motivates the need for effective source task selection.

4.1.4 Regression Model Performance

The performance of the regression model used to estimate transferability was evaluated using 10-
fold cross validation at the task level. In other words, during each run, the tasks were split into
10 sets such that 9 of these formed the set Tsource while the remaining fold was considered as the
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Table 3: Regression Model Performance measured by Correlation Coefficient
Transferability Linear Regression M5P Model Tree
Measure

jumpstart(m = 1) 0.54 0.74
jumpstart(m = 3) 0.64 0.85
jumpstart(m = 5) 0.65 0.87
jumpstart(m = 10) 0.66 0.87
jumpstart(m = 15) 0.65 0.86
jumpstart(m = 30) 0.61 0.83
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Figure 9: Source Task Selection loss for three transferability measures. The two regression mod-
els were compared with the baseline source task selection model and with random source task
selection.

set of target tasks Ttarget. The regression model was trained on all pairs of tasks (Ti, Tj) such that
Ti, Tj ∈ Tsource and then tested on all pairs of tasks induced by the cross product of Tsource×Ttarget.

Table 3 shows the performance of the two regression algorithms that were used to predict the
jumpstart(m) measure for different values of m, the size of the temporal window used to com-
puted the jump start. The results are reported in terms of the Correlation Coefficient (CC) between
the actual and the predicted values. These results show that the difficulty of modeling task trans-
ferability depends on the measures used to estimate the benefit of transfer. For example, modeling
the jump start after just 1 training episode on the target task is more difficult than modeling the
jump start after 10 episodes on the target task. Overall, the CCs are high enough that we expect
the ranking induced by the regression models to be useful for source task selection.

4.1.5 Source Task Ranking and Selection

Next, the proposed framework for source task selection was evaluated in terms of the expected
loss, i.e., if the agent selects the source task that maximizes the expected transferability according
to the regression model, how much worse does it do compared to selecting the optimal source
task that it has already learned. Figure 9 shows the result of this test for two different regression
algorithms, as well as the baseline approach. In addition, as a sanity check we computed the loss
when randomly selecting a source task.
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Figure 10: Evaluation of source task ranking using the learned regression model and the base-
line case-based reasoning approach. The ranking was evaluated using the Normalized Discounted
Cumulative Gain (DCGp) and the jumpstart(m = 5) measure (the results were similar for the re-
maining values of m used in this study). The value for p, the number of elements to be considered
in the ranking (starting at position 1) was set to 20.

As we expected, the baseline approach which selects a source task based on task similarity
in the task feature space performs better than randomly selecting a source task. Furthermore, the
proposed method for learning task transferability substantially outperforms the baseline approach.
While the Linear Regression (LR) model performed worse in terms of Correlation Coefficient
when compared to the M5P Tree (M5P), the top source task selected when using LR tended to
be a better source task than the one selected by M5P. The results so far were computed when
approximately 172 tasks (i.e., 9 out of 10 folds) were available for training the regression model.
An important question is whether performance would suffer as the training set becomes smaller.
To obtain an answer, the number of tasks used to train the model was varied from 2 to 30 and
we found that the expected loss converges after about 20 tasks (i.e., 400 pairs) are available for
learning the regression.

The quality of the rankings were further evaluated using the Normalized Discounted Cumula-
tive Gain measure. The results of this test are shown in Figure 10. Overall, LR performed the best.
These results conclusively show that inter-task transferability can be learned even without samples
or models of the target task. In particular, when faced with a new target task, a single good source
task can be selected for transfer. These results naturally raise the question of whether it is possi-
ble to chain together multiple such source tasks sequentially to do even better. We examine that
question next.

4.1.6 Multi-stage Transfer

In this section, we explore whether we can chain together a sequence of tasks T1 → T2 → . . . →
Ttarget, such that learning T1 makes it “easier” to learn T2, which makes it “easier” to learn T3, and
so on. For simplicity, consider two stage transfer: we are looking for source tasks T1 and T2 such
that transferring from T1 → T2 → Ttarget gives better performance than training directly on Ttarget
or any of the one-stage transfers T1 → Ttarget and T2 → Ttarget.

Candidates for the tasks T1 and T2 can be determined recursively using the transferability ma-
trix. We simply look at the column corresponding to the target task, and select the row (i.e. source
task) that provides the best transfer. The selected task then becomes the column for the next recur-
sive stage.
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Figure 11: Performance on a target task using one and two-stage transfer. The transfer curves are
offset to reflect time spent training in their source tasks. In this example, all methods of transfer
result in jump start but there is no benefit of two-stage transfer relative to single-stage transfer.

A key question that we have not addressed so far is how to decide how many episodes to
spend on each source task. Training on each of the subtasks T1 and T2 until convergence before
transferring to Ttarget would be equivalent to just training on T2 until convergence and performing
single stage transfer to Ttarget. Therefore, in this preliminary test, we used a heuristic approach
based on the intuition that an agent should train on a source task until additional training does not
improve performance on the target.3

We hand-selected several of the more challenging tasks to serve as Ttarget. The results for one
such target task are shown in Figure 11. All methods of transfer resulted in a jump start, but there
was no benefit to using two stage transfer over single stage transfer. The results were similar for the
other target tasks and overall, we were not able to find a two-stage transfer that was significantly
better than its one-stage counterpart. Our hypothesis is that value function transfer is not suitable
for two-stage transfer, since single stage transfer already initializes the policy in some area of the
search space, and adding more stages does not noticeably refine this area. We leave for future work
whether alternative RL and TL methods would facilitate finding a better two-stage transfer result.

4.1.7 Summary and Discussion

The framework for learning inter-task transferability was evaluated using a large-scale experiment
in which the agent learned to play 192 variations of the Ms. Pac-Man game. To test our framework,
the agent played over 170 million games, making this, to the best of our knowledge, the largest
computational experiment in transfer learning conducted so far. Our results show that an agent can

2 We define the target performance to be the total reward accumulated by the agent on the target task,
for a fixed number of episodes (i.e. the area under the learning curve). Let Abase be the total reward accu-
mulated by training directly on the target task without using transfer, and let Axtransfer be the total reward
accumulated on the target task after training on the source task for x episodes, and using value function
transfer. We used an incremental approach where the agent trained on the source task for 10 episodes, and
used this to compute Axtransfer. If the difference (Axtransfer − Abaseline) was positive and increased, the
agent trained on the source for 10 more episodes. This process was repeated until the difference no longer
increased, at which point training on the source task was halted.
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indeed learn to predict the transferability (as defined by the jump start measure) for an arbitrary
pair of source-target tasks, provided training pairs for which the benefit (or detriment) of transfer is
known. The learned transferability model was then used to effectively select relevant source tasks
that improve the agent’s learning performance on a given target task.

There are several limitations and open questions that need to be considered for future work.
First, our scenario considered the case where the agent transfers knowledge from just one individ-
ual source task. Future work will explore whether the learned transferability model is useful when
the agent transfers knowledge from multiple source tasks instead. In addition, while efficiency was
not addressed in this project, in practice generating a large set of data using every source-target pair
is expensive. We found that only a small fraction of the source tasks are needed for the source task
selection loss to converge and we believe that simple active learning frameworks can further reduce
the number of task pairs needed to learn the transferability model. In our experiments, the agent
learned the source tasks for the maximum amount of allowed time but we have also found that
policies can successfully be transferred even when there is only limited exploration in the source
task. Therefore, efficiency may also be improved if the agent can autonomously decide when to
stop learning a source task and transfer the policy to a target task.

Evaluating efficiency in a setting like this poses additional challenges as it depends strongly on
the number of potential target tasks to be solved by the agent in the future. To get a strong transfer
result, the time (e.g., number of episodes) spent training on source tasks needs to be taken into
account when comparing the performance with training without transfer. When there is only one
target task, the amount of learning spent on source tasks is bounded by the amount of time required
to learn the target task from scratch. Most recent frameworks for evaluating transfer assume that
there is indeed only one target task [58] and therefore, there is a need to identify good measures for
quantifying strong transfer results in the setting where the set of target tasks is large and potentially
larger than the set of source tasks.

One aspect of the framework that makes it applicable in a wide variety of settings is that it is
agnostic with respect to the reinforcement learning algorithm or transferring learning method being
used. At the same time, this property limits the potential for deeper theoretical analysis. Another
open question is whether a similar methodology can be used to discover and subsequently model
two-stage transfer, i.e., situations in which the agent learns multiple source tasks in a precise order
such that learning on the target task is improved. A follow-up result from this study is that two-
stage transfer sequences are rare or perhaps non-existent in the task space we considered. Future
work will examine whether this is a limitation of the domain, or a limitation of the transfer learning
method (i.e., value-function transfer).

4.2 Source Task Creation for Curriculum Learning
In this section, we apply the methods described in Section 3.4 to create a curriculum in two chal-
lenging multiagent domains: Ms. Pac-Man and Half Field Offense. First, we demonstrate the
effectiveness of domain-dependent and domain-independent subtasks in a simple one-stage cur-
riculum (i.e. classic transfer learning paradigm) applied to Ms. Pac-Man. Then, in Half Field
Offense, we utilize multiple functions from Section 3.4 to create a successful multistage curricu-
lum for learning. Furthermore, we show that the sequence of tasks in a curriculum matters, and
provide empirical evidence that such curricula can be formed recursively.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29



(a) (b) (c) (d)

Figure 12: Examples of tasks in Ms. Pac-Man (a and b) and Half Field Offense (c and d). (a)
Maze 1 (b) Maze 4 (c) HFO initial configuration and 2v2 dribble task (d) 2v2 shoot task. In HFO,
offensive players are colored yellow, defensive players are blue, and the goalie is pink. The ball is
shown by the white circle.

4.2.1 Ms. Pac-Man

Ms. Pac-Man (see Figure 12a and 12b) is a game where the agent’s goal is to traverse a maze
and accrue points by eating objects such as pills, while avoiding the four ghosts. At the start of
the game, there are a large number of pills throughout the maze, four power pills located at each
corner, and four ghosts that are initially placed in an area inaccessible to Ms. Pac-Man. If a ghost
catches Ms. Pac-Man, the game is over; however, if Ms. Pac-Man eats one of the four power pills,
the ghosts themselves become edible by the agent.

We used the Ms. Pac-Man implementation described in [54, 44]. The agent’s state space was
represented by a set of local features described in [54], that are egocentric with respect to the
agent’s position on the board. Learning was done using Q-Learning [47], and transfer via value
function transfer.

4.2.2 Maze Simplification

The first experiment is an application of the TASKSIMPLIFICATION method. The domain of Ms.
Pac-Man comes with four different maze levels, some of which are easier for the agent to learn
than the others. Thus, intuitively, one way to apply the TASKSIMPLIFICATION method is to train
an agent on an easier maze and transfer the learned policy to a harder one. The results of such an
application are shown in Figure 13. Here, the target task was maze level four (Figure 12b). The
TASKSIMPLIFICATION principle was used to generate a source task by changing the maze level
from four to one (Figure 12a). The transfer curve shows the effects of learning for 5 episodes on
the source task and then learning for an additional 20 episodes on the target task. The baseline
curve in contrast shows the result of learning for 25 episodes directly on the target task. Both
curves are averaged over 20 runs. The results clearly show that applying TASKSIMPLIFICATION
results in jumpstart and substantial improvement in the expected reward over the first 25 episodes.

4.2.3 Avoiding Ghosts

Next, we illustrate the use of an agent-specific source task, MISTAKELEARNING, in the Ms. Pac-
Man domain. We consider a mistake to be the event where Ms. Pac-Man is eaten by a ghost, which
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Figure 13: Results of TASKSIMPLIFICATION applied to the Ms. Pac-Man domain. See Section
4.2.2 for details. Dashed lines indicate standard error.

is a terminal non-goal state. Whenever a mistake occurrs, we spawn the following task:

Mmistake = MISTAKELEARNING(Mt, Xt, ε)

This call creates a subtask that rewinds ε = 50 game steps from the moment the episode was ter-
minated. The agent subsequently trains for 5 episodes in the generated subtask, after which training
in the target task is resumed. The result of this test is shown in Figure 14. For this experiment,
we measured the agent’s performance as a function of the number of game steps, since episodes
spent on learning in the generated subtasks were much shorter. Results are averaged over 20 trials.
The plot shows that the application of MISTAKELEARNING results in much faster learning when
compared to the baseline approach of restarting each episode from the initial configuration upon
episode termination.

So far, the two examples show that both domain-dependent and domain-independent methods
can be used to generate effective source tasks for a given target task. The next set of experiments
demonstrate how, in addition, they can also be used to design a curriculum for an agent learning a
task that may be too difficult to learn from scratch, or even using a single source task.

4.2.4 Half Field Offense (HFO)

Half field offense [19] is a subtask of Robocup simulated soccer in which a team of m offensive
players try to score a goal against n defensive players while playing on one half of a soccer field.
The domain poses many challenges, including a large, continuous state and action space, coordi-
nation between multiple agents, and multiagent credit assignment. Each of these difficulties makes
learning hard, especially early on when goal scoring episodes can be rare.

Each HFO episode starts with the ball and offensive team placed randomly near the half field
line. Likewise, the defensive team is randomly initialized near the goal box. A sample starting
configuration can be seen in Figure 12c. The goal of the offensive team is to move the ball up the
field while maintaining possession, and take shots to score on goal. An episode ends when either
(1) a goal is scored, (2) the ball goes out of bounds, (3) the defense captures the ball, or (4) the
episode times out. The reward structure of the domain is shown in Table 4.2.4.
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Figure 14: Results of MISTAKELEARNING applied to the Ms. Pac-Man domain. See Section 4.2.3
for details. Dashed lines indicate standard error.

Table 4: Reward structure in HFO
Event Reward
Goal 1.0

Ball out of bounds -0.1
Ball with offense 0

Ball captured by defense -0.2
Ball captured by goalie -0.1

Episode times out -0.1

As done in Kalyanakrishnan et al. [19], we focus on learning behaviors for the player with the
ball. The player with the ball has to choose one of the following actions:

• Pass k: A direct pass to the teammate that is k-th closest to the ball, where k = 2, 3, . . . ,m.

• Dribble: A small kick in the cone formed between the player and the goalposts, that maxi-
mizes its distance to the closest defender also in the cone.

• Shoot j: A full power kick towards one of j evenly spaced points on the goal line.

Offensive players without the ball follow one of several fixed formations to provide support.
The agent’s state space consists of distances and angles to points of interest, which are listed
in Table 4.2.4. We used CMAC tile coding for function approximation, Sarsa for the learning
algorithm [47], and value function transfer to transfer knowledge.
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Table 5: Feature space for the player with the ball in HFO. We index offensive players by their
distance to the ball. Thus, the player with the ball is O1 and its teammates are O2, O3, . . . Om.

Feature Description
dist-to-goalie Distance from O1 to the goalie
dist-to-defender-in-
cone

Distance from O1 to the closest defender in the drib-
ble cone

dist-to-teammatei Distance from O1 to each teammate Oi, for i =
2, 3, . . .m

dist-teammatei-to-
closest-defender

For each Oi, the distance to its closest defender, i =
2, 3, . . .m

dist-teammatei-pass-
intercept

For each Oi, the shortest distance between a defender
and the line between O1 and Oi, i = 2, 3, . . .m

min-ang-teammatei-
defender

For each Oi, the smallest angle between Oi, O1, and
a defender, i = 2, 3, . . .m

dist-to-shot-targeti Distance from O1 to location i on the goal line, i =
1, 2, . . . j

dist-goalie-to-shot-
targeti

Distance from goalie to location i on the goal line,
i = 1, 2, . . . j

dist-shoti-intercept Shortest distance between a defender and the line be-
tweenO1 and location i on the goal line, i = 1, 2, . . . j

ang-goalie-shot-targeti Angle between goalie, O1, and location i on the goal
line, i = 1, 2, . . . j

ang-defender-shot-
targeti

Smallest angle between a defender, O1, and location i
on the goal line, i = 1, 2, . . . j

Space of tasks

Half field offense has a number of degrees of freedom that allow creating many different types of
tasks. We list some of the relevant degrees of freedom in Table 4.2.4. In addition to these, various
aspects of the field (such as the size of the goals, the goal box, etc.), the players (such as visibility,
stamina, etc.), and the world physics can also be changed.

These degrees of freedom allow us to quickly create many domain-specific source tasks, using
the TASKSIMPLIFICATION rule. For example, we can add more teammates or reduce the number
of defenders to give the offense more options. We can change the defensive team behavior to train
against opponents of varying difficulty. We could also change various aspects of the world size and
physics to make scoring and movement easier.

However, we can also create agent-specific source tasks by observing the behavior of the agent
on the target task. For example, after observing generally unsuccessful trajectories on the target
task, we could use MISTAKELEARNING to recreate situations where the agent lost the ball or
failed to score, in order to learn how to avoid or resolve them. Another option would be to build
upon successful trajectories using PROMISINGINITIALIZATIONS, which would create tasks that
initialize the offense at different positions near the goal, allowing them to drill on how to shoot.

Combined, the methods from the previous section form a space of tasks that can be used to
create a curriculum. In the next section, we illustrate the formal specification of some of the tasks
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Table 6: Half Field Offense degrees of freedom
Parameter Range

Number Offense Players {0, 1, . . . 4}
Number Defense Players {0, 1, . . . 5}

Defense Behavior {Agent-2D, Helios, WrightEagle}
Formation Type { Flat, Box, Trapezoid}

Field Width 20 – 68
Field Length 20 – 52.5

Max ball speed 0 – 5
Max player speed 0 – 1

Wind Noise 0 – 1

and their creation that we found to be useful in our experiments.

4.2.5 2v2 HFO Curriculum

We first consider the target task of 2v2 half field offense, where 2 attackers must score against 1
defender and 1 goalie. We used agents from the released binaries of the Helios team to form the
defensive team [2]. Helios and WrightEagle consistently place among the top teams in the annual
Robocup 2D Simulation League tournament, making even this small version of half field offense
a challenging task.

Let M2v2 denote the target task’s MDP, and X2v2 be a set of (presumably generally unsuc-
cessful) samples collected from M2v2. We can generate this task M2v2 = τ(D, F2v2), using the
following instantiations for the degree of freedom vector (the order of parameters is the same as in
Table 4.2.4):

F2v2 = [2, 2,Helios,flat, 68, 52.5, 2.7, 1, 0.3]

The following are specific subtasks that could be created using the methods from Section 3.4:

Shoot Task

One useful skill to learn is where a goal can be scored from. After having obtained some experience
in the target task with at least a few goals, it is very likely that similar scenarios are also possible
to score from. We can gradually expand this set of states that lead to a high reward termination
using PROMISINGINITIALIZATIONS, where we use a Euclidean distance metric C over the agent’s
relative distances and angles to other players, to measure state proximity:

Mshoot = PROMISINGINITIALIZATIONS(M2v2, X2v2, C, δ, ρ)

A sample scenario can be seen in Figure 12d. Essentially, this task creates different configura-
tions of players near the goal, and drills shooting. In our experiments, we set δ = 3 and ρ = 0.10.
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Dribble Task

Initially while exploring, the agent takes many shots on goal from far away, which are unlikely
to score. A skill the agent needs is the ability to move the ball up the field, maintaining pos-
session away from defenders, until the agent reaches a state that it can score from. This can be
accomplished by chaining ACTIONSIMPLIFICATION with Mshoot using LINKSUBTASK:

M1 = LINKSUBTASK(M2v2,Mshoot, Vshoot)

Mdribble = ACTIONSIMPLIFICATION(M1, X2v2, α)

LINKSUBTASK creates a subtaskM1 where the goal is to reach situations that the agent is likely
to score from, as learned inMshoot. ACTIONSIMPLIFICATION prevents the agent from taking shots
on goal from far away, since these actions usually lead to defense captures, and adds this restriction
to M1. An example of the initial configuration for the dribble task is shown in Figure 12c. In our
experiments, we set α = 100.

Figure 15: Goal scoring accuracy on 2v2 HFO for agents following different curricula. Standard
error (not shown to avoid clutter) ranged from 0.015 to 0.027 over the last 200 episodes for all
curves.

2v2 Curriculum Results

Figure 15 shows the performance on the target task of 2v2 HFO for learners following various
curricula composed of the 2 tasks above. For each curriculum, we trained on sub tasks until
convergence. Offsets in the curves represent time spent training in source tasks. Labels indicate
the curricula used; baseline is learning on the target task without transfer.

The teams of agents were evaluated on their goal scoring ability: the fraction of times they are
able to score a goal. Since each episode results in binary goal or no goal scored result, we used
a sliding window of 200 episodes around each point to determine the average goal-scoring rate at
each time step. All results are averaged over 25 trials. From Figure 15, it is clear to see that using
a sequence of tasks to guide training significantly improves the final performance.
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Figure 16: Goal scoring accuracy on 2v3 HFO for agents following different curricula. Standard
error (not shown to avoid clutter) ranged from 0.010 to 0.039 over the last 200 episodes for all
curves.

4.2.6 Extension to 2v3 HFO

In this section, we extend the problem to the harder task of 2v3 half field offense, where there are
now 2 defenders and a goalie. 2v3 is fundamentally harder than 2v2, since the additional defender
means both attackers can now be marked. We can generate this target task M2v3 = τ(D, F2v3)
using the following degree of freedom vector:

F2v3 = [2, 3,Helios,flat, 68, 52.5, 2.7, 1, 0.3]

This time, we can use TASKSIMPLIFICATION to simplify the degree of freedom vector to
recreate the 2v2 task from the last section, allowing us to use it as a source for 2v3:

M2v2 = TASKSIMPLIFICATION(M2v3, X2v3, D, F2v3, τ)

Doing this also allows us to utilize the dribble and shoot tasks, since they are derived from
M2v2. Thus, we now consider 3 possible source tasks for a curriculum: Mdribble, Mshoot, and M2v2.
Results of various curricula composed of these source tasks can be seen in Figure 16.

Again, using a multistage sequence of tasks provides better asymptotic performance than a
curriculum composed of a subset of its source tasks. Interestingly, we also find that the most
effective curriculum in 2v2 HFO is a subset of the best curriculum in 2v3 HFO when considering
this space of tasks. This observation suggests that an automated procedure to create curricula could
be designed recursively.

4.2.7 Summary and Discussion

In this report, we introduced the problem of curriculum learning in reinforcement learning. As
a step towards this goal, we presented a series of functions that utilize domain knowledge and
observations of an agent’s performance to create subtasks tailored to the agent. We showed how
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Table 7: Summary of percentage of participants for different command selections in the gradually
simple condition

Gradually Simple Con
# Selected Command Initial Cur Final Cur
1 move to the yellow room 58% 55%
2 move to the yellow/red/blue/green/purple room 85% 85%
3 move the bag to the red/blue/green/purple room 43% 63%
4 move the bag/basket/backpack/chair to ... room 75% 90%
5 # 1 + # 3 20% 33%
6 # 2 + # 4 60% 75%

Table 8: Summary of percentage of participants for different command selections in the gradually
complex condition

Gradually Complex Con
# Selected Command Initial Cur Final Cur
1 move to the yellow room 78% 75%
2 move to the yellow/red/blue/green/purple room 95% 90%
3 move the bag to the red/blue/green/purple room 35% 55%
4 move the bag/basket/backpack/chair to ... room 65% 85%
5 # 1 + # 3 23% 40%
6 # 2 + # 4 60% 75%

these subtasks could be used as components of a multistage curriculum to significantly improve an
agent’s performance in two challenging multiagent reinforcement learning domains. A challenging
next step in this research agenda is to develop automated methods for selecting from among the
space of subtasks that our functions generate, in order to create a fully automated, individualized
RL curriculum.

4.3 Curriculum Construction through Crowd-sourcing
This section summarizes the results of our user-study, which was run on Amazon Mechanical Turk
(AMT). We consider data from 80 unique workers, after excluding 17 responses which we identi-
fied as users who simply pushed through the AMT task as fast as possible to be paid. We identified
such users as those whose completion time was shorter than 5 minutes (the average completion
time was 15 minutes 43 seconds, with a standard deviation of 8.8 minutes) or if both designed
curricula contained only a single task. There were 40 participants for each of the experimental
conditions (gradually complex and gradually simple).

4.3.1 Participant Performance

Recall that participants were told that their goal was to design a curriculum the dog would train
on such that the dog could successfully complete the novel command “move the bag to the yellow
room” in the target environment (Figure 2) with little explicit feedback. Therefore, we first exam-
ined whether users could successfully identify the need to communicate color and object concepts
separately in their curriculum in two experimental conditions. We measured this by analyzing the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
37



percentage of users who included both the command regarding moving to any colored room and
the command contained any move-able object. Results in Tables 7 and 8 (the last row) show that in
the gradually complex condition, 60% of users captured the idea of teaching the agent both color
and object references separately in their initial curriculum, and this number increased to 75% in
their final curriculum. The gradually simple condition showed exactly the same results.

Then, we were interested in studying whether users could figure out to teach the agent two more
specific concepts separately—the yellow room (the room the agent needs to move to in the target
task) and the bag object (the object the agent needs to move in the target task). We evaluated this by
computing the percentage of users who combined the command “move to the yellow room” and the
command “move the bag to the red/blue/green/purple room” in their curriculum. Surprisingly, in
the gradually complex condition, only 23% of users introduced the yellow room and bag concept to
the agent in their initial curriculum, and 17% more users captured this idea in their final curriculum.
The gradually simple condition produced similar results. However, there is still some evidence
showing that more users tended to teach the agent these two specific concepts the agent needed
to learn in the target task. Specifically, in the gradually complex condition, we find that 1) 78%
of users tried to train the agent to move to the yellow room, and 2) a total of 65% of participants
wanted to teach the agent to move an object (bag/basket/backpack/chair) to some colored room,
where 53.8% of them focused on teaching it to move the bag.

In both the initial and final curricula, a chi-squared test shows that the number of users who
selected each type of commands in Tables 7 and 8 was not significantly different (p > 0.05)
between the two experimental conditions, suggesting that the ordering of source environments does
not affect human performance in identifying the concepts the agent needs to learn to complete the
target task.

4.3.2 Concept Introduction

We hypothesized that users would gradually introduce more complex environments or commands
to the agent in their curriculum. To validate this, we analyzed the changes in the environment and
command complexity. We found that in the gradually complex condition, only 37.5% (or 45%) of
users consistently increased environment complexity in their initial (or final) curriculum. However,
a total of 50% (or 60%) of users selected the simple command regarding moving to some colored
room first, and then consistently chose more complex object-moving commands in their initial (or
final) curriculum. The gradually simple condition showed similar results. This suggests that users
preferred to consistently introduce more complex commands rather than environments to the agent
in each curriculum. A chi-squared test shows that the number of users who consistently introduced
more complex environments or commands was not significantly different (p > 0.05) between two
experimental conditions.

There is another interesting finding that users tended to introduce more complex commands to
the agent across different curricula in both experimental conditions. In particular, in the gradually
complex condition, for the 37 users who kept or increased the curriculum length, 54% of them
only replaced the command regarding moving to some colored room with more complex object-
moving command, or added new object-moving commands in the final curriculum. In the gradually
simple condition, 62% of the 34 users who kept or increased the curriculum length only introduced
more complex object-moving commands to the agent in their final curriculum. Therefore, as we
expected, both within a curriculum and between curricula, users tended to gradually introduce
more complex commands to the agent rather than more complex environments.
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Figure 17: The number of times each of four transitions being followed for each environment in
the initial curricula in the two experimental conditions. There are 16 corresponding squares for
16 environments. The blue number represents the total number of times all four transitions being
followed in each environment.

4.3.3 Transition Dynamics

Although previous results show that less than half of users consistently increased the environment
complexity in their curriculum, we observed that a considerable number of users implemented this
in segments. It suggests that most users considered increasing the environment complexity when
designing curricula. A better understanding of how users select more complex environments might
give us insights into the active selection of better curricula.

We hypothesized that different users would choose to increase the environment complexity in
different ways, and it might be affected by the ordering of source environments. In particular, for
the 4×4 grid (shown in Figure 3), we defined four different ways for users to increase the environ-
ment complexity: room transition, object transition, combined transition, and others. For a given
taskMi in a curriculum, a transition toMi+1 is a room transition if and only if the number of rooms
increases between Mi and Mi+1. If the number of objects increases, it is an object transition, and
if they both increase it is a combined transition. All other cases are considered as other transitions.
We aim to study the most popular transition followed by users in two experimental conditions by
computing the frequency of each of four transitions being followed for each environment.

Figure 17 summarizes the number of times each transition type (room, object, combined, and
other) was used from each environment in the initial curricula in the two experimental conditions.
We observe that the room transition was the most-frequently used in the gradually complex condi-
tion, while the object transition was the most-frequently used in the gradually simple condition. A
chi-squared test shows that the differences of the total number of times each transition type being
followed when users design initial curriculum between two experimental conditions was statisti-
cally significant (p � 0.01), verifying that the ordering of source environments does affect the
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way humans use to increase the environment complexity.

4.3.4 Environment Preference

We hypothesized that some source environments in the grid would be preferred by users when
designing their curricula. Analyzing the properties of these environments might enrich the gen-
eral principles regarding efficient curricula and inspire the development of new machine learning
algorithms that accommodate human teaching strategies. Therefore, we explored user preference
in each environment by computing the ratio of the number of users who selected corresponding
environment at least once to the total number of users.

Figure 18 summarizes user preference in each of the 16 environments when designing an initial
or final curricula in two experimental conditions. A larger dot represents a higher probability of the
corresponding environment being chosen. We find that when designing initial curriculum, users
were more likely to select 1) Environments 1, 2, 5, and 16 in the gradually complex condition,
and 2) Environments 5, 6, 12, and 16 in the gradually simple condition. This finding implies that
users preferred to choose 1) the simplest environments that only contain one important concept
(Environments 1 and 2 are the two simplest ones that refer to a yellow room, and Environment 5
and 6 are the two simplest ones that include an object) that the agent needed to learn for the
target task, and 2) more complex environments that are more similar to the target environment
(Environment 12 and 16 are two of the most similar ones to the target environment).

Compared to the initial curricula, Figure 18 shows that most environments had a higher prob-
ability of being included in the final curricula in the two experimental conditions, due to the fact
that most users tended to increase the curriculum length. In particular, Environments 7, 11, and 12,
and 3, 10, 12, and 15 gained the most probability in the gradually complex and gradually sim-
ple conditions, respectively. As discussed before, users tended to focus on teaching the agent more
complex object-moving tasks (building on previous tasks) when redesigning curricula, and most of
these environments provide a good chance for the agent to learn object reference with a relatively
large number of different colored rooms.

We also note that users had a lower probability of choosing the two simplest environments (1
and 2) after varying the order of the 16 environments. Fisher’s exact test shows that the frequency
of each of the 16 environments being selected by users into initial or final curricula was not signif-
icantly different (p > 0.05) between the two experimental conditions, suggesting that the ordering
of source environments does not influence participants’ preference in choosing environments. We
believe that knowing users prefer 1) isolating complexity, 2) selecting simplest environments they
can to introduce one complexity at a time, 3) choosing environments that are most similar to the
target environment, and 4) introducing complexity building on previous tasks rather than back-
tracking to introduce a new type of complexity can be highly useful for the design of new machine
learning algorithms which accommodate human teaching strategies.

5 Conclusion
In this project, we introduced the problem of curriculum learning in reinforcement learning. The
problem consists of designing a sequence of source tasks for an agent to train on, such that final
performance or learning speed on a difficult target task is improved.

We approached the problem along three main lines. First, we looked at whether an agent
can learn to predict the benefit of transferring a policy from one task to another such that it can
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Figure 18: The probability of each environment being included in the initial or final curricula in
the two experimental conditions. The purple circle represents the overlap of probability.
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appropriately select a good source task for a given target task. To solve that problem, we proposed
a framework for source task selection in settings where neither samples from the target task, nor
a model of the task, are available to the learning agent. Instead, the agent used task descriptors
(i.e., a low-dimensional feature vector describing some aspects of the task) to learn the expected
benefit of transfer, i.e., transferability, between source tasks and target tasks. The framework was
evaluated using a large-scale experiment in which the agent learned to play 192 variations of the
Ms. Pac-Man game.

To test our framework, the agent played over 170 million games, making this, to the best of our
knowledge, the largest computational experiment in transfer learning conducted so far. Our results
show that an agent can indeed learn to predict the transferability for an arbitrary pair of source-
target tasks, provided training pairs for which the benefit (or detriment) of transfer is known. The
learned transferability model was then used to effectively select relevant source tasks that improve
the agent’s learning performance on a given target task.

Next, we presented a series of functions that utilize domain knowledge and observations of an
agent’s performance to create subtasks tailored to the agent. We showed how these subtasks could
be used as components of a multistage curriculum to significantly improve an agent’s performance
in two challenging multiagent reinforcement learning domains. A challenging next step in this
research agenda is to develop automated methods for selecting from among the space of subtasks
that our functions generate, in order to create a fully automated, individualized RL curriculum.

Finally, we explored the possibility of using non-expert humans to create a curriculum for a
learning agent. We presented an empirical study designed to explicitly explore how non-expert
humans design curricula for an agent to train on, allowing the agent to complete a target task
with little explicit feedback. Our most important finding was that users followed some salient
patterns when selecting and sequencing environments in the curricula, which we plan to leverage
in the design RL algorithms in the future. Our goal will be to develop inductive biases in learning
algorithms that can benefit from the types of tasks and transitions non-expert human teachers use
more frequently. Future work will 1) allow users to create a sequence of novel source tasks for
the agent to train on, 2) come up with a stable way to show the score of the designed curricula
to motivate users to design better ones, and 3) implement an RL algorithm that can leverage all
interesting salient patterns followed by non-expert humans to design better curricula.
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List of Symbols, Abbreviations, and Acronyms
AMT: Amazon Mechanical Turk.

CBR: Case based reasoning. A framework in which new tasks are solved by re-using solutions
form previously solved similar tasks.

DCG: Discounted Cumulative Gain. A measure used to evaluate the quality of an estimated rank-
ing with respect to the ground truth ranking.

HFO: Half-field Offense, a domain based on the 2D Robocup Simulator.

LR: Linear Regression. A method for modeling the relationship between a dependent variable
and one or more explanatory variables using a linear function.

MDP: Markov Decision Process. A mathematical framework for modeling decision making under
uncertainty.

RL: Reinforcement Learning. A class of algorithms concerned with how agents can take actions
in an environment as to maximize some notion of reward.

TL: Transfer Learning. A methodology in which training on a source task is leveraged to speed up
or otherwise improve learning on a target task.
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